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Mixing shocks in two-phase flow 

By JAN H. WITTE 
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(Received 22 October 1963 and in revised form 23 December 1968) 

In  gas-liquid flows a certain sudden change of the flow structure may occur, 
which can be described as a transition from ‘jet flow ’ to ‘froth flow’ accompanied 
by energy dissipation and pressure build-up. Upstream of this phenomenon the 
gas is the continuous phase; downstream the liquid is the continuous phase. The 
phenomenon, which has been called ‘mixing shock’, shows some similarity and 
also some differences with the plane shock wave in gasdynamics. In  the first 
part of this paper the mixing shock is treated as a one-dimensional macroscopic 
process. With the aid of the laws of conservation of mass, momentum and 
energy, expressions are obtained for the pressure and entropy change across the 
mixing process. In  addition the stability of the mixing shock in a cylindrical flow 
channel is treated. Next, a theory that explains the gas entrainment mechanism 
in the mixing shock is proposed. As an experimental tool a water-air ejector with 
the water as a driving medium was used. The experiments confirm the macro- 
scopic and the microscopic theory. In  the last section of this paper theoretical 
and experimental evidence is combined to construct a model of the processes 
that play a role in the shock. 

1. Introduction 
In  certain two-phase flow configurations a particular change of the flow struc- 

ture may occur. This structure change may best be described as a sudden change 
of jet flow to  froth flow accompanied by a static pressure increase and energy 
dissipation. The jet flow is characterized by a core of fast-moving liquid droplets 
surrounded by gas. In  general a velocity difference or slip will exist between the 
gaseous and liquid phases. Froth flow consists of liquid in which the gas is dis- 
persed in the form of bubbles. The diameters of these bubbles are small compared 
with the diameter of the flow channel. The slip between the bubbles and the 
surrounding liquid is very small. 

The author of the present paper has named this phenomenon the mixing shock. 
Since the change of continuous phase is extremely rapid the term ‘shock’ is 
applied. The word ‘mixing ’ is used because the gas phase is finely dispersed in 
the liquid when it passes through this flow discontinuity. 

Von Pawell (1936) first observed the phenomenon through the transparent 
wall of a liquid-gas ejector and mentioned this in his thesis. Apart from its con- 
siderable technical interest for the isothermal compression of gases (Witte 1962, 
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1965,1966), a close study of the mixing shock is valuable for obtaining an insight 
into the often mystifying behaviour of two-phase flows. 

The mixing shock shows some similarity and also some differences with the 
plane shock wave in gasdynamics. The following characteristics are similar: 
(i) downstream of the mixing shock the pressure is higher and the velocities are 
lower than upstream; (ii) this effect is accompanied by dissipation of kinetic 
energy; (iii) when the mixture that is created in the shock is treated as being 
homogeneous with a special equation of state, it may be proved with a macro- 
scopic theory that the flow downstream of the shock is always subsonic. 

The most important differences are: (i) owing t o  the high specific heat of the 
liquid phase, the temperature changes across such a shock are extremely small; 
(ii) before the mixing shock an appreciable velocity difference or slip between the 
liquid and the gaseous part of the flow will generally exist. Thus we cannot speak 
of a homogeneous mixture, nor can we speak of supersonic mixture flow before 
the shock. Upstream of the shock the gas velocity may be higher than the liquid 
velocity; (iii) the mixing shock is much thicker than a shock wave in gas- 
dynamics. 

Campbell & Pitscher (1958) investigated the propagation of plane shock waves 
in a homogeneous gas-liquid mixture. Applying the laws of conservation of mass, 
momentum and energy, they derived shock-wave relations. In this paper we will 
use the same approach as Campbell & Pitscher in treating the case of the mixing 
shock. However, it must be kept in mind that, compared with plane shock waves 
in two-phase mixtures, we have one parameter more, viz. the velocity difference 
between the gas and liquid phase before entering the mixing shock. Other 
subjects that will be covered are the stability of a mixing shock situated in a 
cylindrical flow channel and the microscopic gas entrainment mechanism. 

Experimental evidence was collected with a liquid-gas ejector, see figure 1.  
The gas flows through feed pipe d to the suction chamber b and is entrained in 
the mixing shock e .  The mixing shock can be placed anywhere in the flow channel 
by applying back pressure. In  order to obtain easy-to-measure pressures and to 
diminish the influence of gravity on the flow phenomena in the horizontal mixing 
tube, high jet flow speeds were used, of the order of 30-70m/sec. The static 
pressure in the jet flow and the suction chamber was generally below ambient; 
after the shock the static pressure in the mixture could reach a level of up to 
12 atmospheres. 

2. The isothermal model 
Before writing down the equations which govern the behaviour of the shock, 

we have to elaborate on the assumptions on which the theory will be based. 
First, the flow of the gas and the liquid upstream and downstream of the mixing 

shock is assumed to be continuous. This property becomes exact when the number 
of droplets or gas bubbles passing a reference plane perpendicular to the flow 
direction per unit time is infinitely large and their dimensions infinitely small. 
In  practice, this number is so large that the entrained gas mass flow is not subject 
to measurable fluctuations. 
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Furthermore, the flow is assumed to be one-dimensional and the influence of 
gravity is neglected. 

It is also assumed that the temperature in a cross-section through the flow 
channel is constant. This assumption may be made plausible by pointing out 
that the contact surface between the gas and the liquid part of the flow is very 

FIGURE 1. Schematic view of the experimental set up. 

The influence of the vapour pressure and the viscosity of the gas and the liquid 
will be neglected. Wall friction will also be neglected. However, we point out that 
wall friction is important in stability considerations and will be introduced in $ 4. 
In this section the temperature differences in the direction of the flow are assumed 
to be zero. In  $ 3  these differences are calculated for our experiments to be of 
the order of 0.1 degK. 

We shall neglect the excess pressure caused by the surface tension in the 
bubbles in the mixture after the shock. The withdrawal of surface tension energy 
from the total energy of the flow will also be neglected. However, in $6,  it will 
be shown that the relatively small contributions of the surface tension effects 
in the energy balance can be used for calculating the gas-volume rate entrained 
by the mixing shock. 

In  the following considerations it will be assumed that the liquid is incom- 
pressible and that the gas follows the ideal gas law. The mass flow rate of the gas 

41 Fluid Meoh. 36 
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is very small compared with the liquid mass flow rate and will be neglected. Slip 
between the gas bubbles and the liquid in the mixture after the shock will be 
neglected. 

Two reference planes are chosen, one upstream and one downstream of the 
shock. To the downstream conditions we will attach subscript 1, to the upstream 
conditions subscript 2. Subscripts 1 ,  g and rn will be used for denoting properties 
of the liquid, gas and mixture respectively. Subscripts n and mt refer to nozzle 
and mixing tube. Absolute pressure, speed and density are given by p ,  u and p. 
Cross-sectional area, mass flow rate and volume flow rate are denoted by A ,  M 
and Q; see also figure 1. 

Using the above given assumptions we can write down the following relation- 
ships : 

Continuity equation 4l = W8. (2.1) 

Momentum equation 

Equation of state of the mixture 

PmIPl = @2/Pl)/{(P2/Pl) + cQ,,/sJt. 
Energy equation Tl, = T12. 
It is seen that the presence of the gas phase only influences (2.3). In  order to 

simplify the following calculations we define the superficial liquid veIocity in the 
mixing tube: u* = Ml/pl Amt; and the following dimensionless quantities: 

6 = p2/p l ,  compression ratio across the mixing shock; 
a = p1u*2/p1, Euler number before the shock; 
6 = Qgl/Q1, volume flow rate before the shock; 
S = ugl/ull, slip factor before the shock; 
a2 = pm2/pI, mixture/liquid density ratio; 
$I = An/A,, nozzlelmixing tube area ratio; 
f = (Arnt - &)/A,, a useful area ratio. 

Combining (2.1) and (2.2) and introducing 8,  a, q5, 6 and a2 in (2.2) and (2.3) 
yield 

e = l + a  --- , (3  3 
a2 = B / ( E + ~ ) .  (2.6) 

Combining (2.5) and (2.6) we derive for the gas-liquid volume flow ratio 
upstream of the shock 

6 = ( 1/a) { - e2 + E( 1 + af )}, (2.7) 

which is related t o  the slip factor according to  

S = 6/f. (2.8) 
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In  a (8, €)-diagram (2.7) represents a bundle of parabolas with the Euler number 
a as parameter and a given value off; see figure 2. The parabolas have two 

e = O ,  8 = 0  and e = l ,  8=f.  points in common, 

The top of each parabola is given by the co-ordinates 
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10 
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FIUURE 2. Mixing-shock parabolas with possible and impossible regions. 

The geometrical locus of these points is found by the elimination of parameter a 
from the co-ordinates of (2.10). The result is 

6 = f e 2 / ( 2 € -  1). (2.11) 

The maximum possible compression ratio ernr is reached when 6 = 0. The 

€m = l+af. (2.12) result is 

If a mixing-shock parabola is sketched in a (6, €)-diagram for a certain value 
of a and f, two solutions of E for each value of 8 are found. The physical significance 
of these solutions may be clarified when the isothermal sound velocity in the 
mixture after the shock is calculated. The fact that the isothermal instead of the 
adiabatic sound velocity in such a two-phase mixture must be used was rigorously 
treated by Plesset & Din (1960, 1961). 

For the sound velocity in the mixture after the shock we give the following 

(2.13) expression c,, = (ap2/ap,)* = "*{(8e/8aa)/a)*. 
Using this equation we compute with the aid of (2.6) 

C,, = ~ * { ( ~ + 8 ) / ( 0 a ) + } .  (2.14) 

We remark that limCk = +m. This is caused by the fact that the liquid 

is assumed to be incompressible, giving an infinitely large sound velocity in the 
8-0 

41-2 
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liquid alone. For finite 8, CA is small compared with the actual sound velocities in 
the liquid and the gas separately. This may be shown by inserting the following 
current values in (2.14) : 

u* = 15 m/sec, E = 6, a = 3, 0 = 3, yielding Cmz = 45 mjsec. 

The mixture velocity after the shock is 

= U*((. + O)/€]. (2.15) 

The Mach number in the mixture can now be computed using (2.13) and (2.14). 
The result is 

M, = umz = (aO)i/s. (2.16) 

x 

FIGURE 3. Enlarged portion of figure 2 near the origin. 

When (2.7) is solved, we obtain 

E l , ,  = ~ [ ( l + a f ) + ( ( l + a f ) 2 - 4 a 8 } ~ ] .  (2.17) 

Thus we have two solutions of 6 for every value of 8 and given a and f. Substitution 
of the &ordinate of the tops of the parabolas (2.10) in (2.17) yields 

%,2 = (aW{(40,/W + ((40,/@- 1)% (2.18) 

which expression combined with (2.16) results in 

(&)1,2 = 1/Wtop/V iI ((@to,/@ - w. (2.19) 

Expressions (2.18) and (2.19) clearly illustrate that on the tops of the parabolas 

When 6 < Otop, two possibilities exist: (i) for the +solutions situated on the 
right-hand branches of the parabolas as shown above, the following holds good: 
el > (a@&, (i'l$J1 < 1; (ii) for the - solutions situated on the left-hand branches 
of the parabolas we have e2 < (a@*, (&Q2 > 1. 

El,, = ( 4 4  ( W I ,  2 = 1. 
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Hence the right-hand branches of the parabolas correspond to subsonic flow 
after the mixing shock and the left-hand branches to supersonic flow after the 
shock. It is further observed that (2.11), being the geometrical locus of the tops 
of the parabolas, is a line of constant Mach number M, = 1. Observation of the 
bundle of mixing-shock parabolas in figures 2 and 3 leads to two important 
problems that will be discussed in the next section. (i) When by a compression 
mixing shock is meant a shock satisfying E > 1, the question is whether super- 
sonic mixture flow after such a shock is possible. Only subsonic flow is found 
experimentally. (ii) When by an expansion mixing shock is meant a shock 
satisfying 0 < E < 1, we ask whether such a shock is physically possible. 

3. The adiabatic model 
In  this section, the flow process in the mixing tube will be assumed to be 

adiabatic. It will be seen that, without heat exchange with the environment, the 
temperature change as a result of dissipation of kinetic energy in the shock is 
very small. Beforehand we will assume that the temperature change across the 
flow process is so small that the relations derived in $ 2  which relate mechanical 
quantities are not changed. Thus only the energy equation (2.4) should be altered. 
We will now introduce some new symbols: 

A T  = qz - q,, the temperature change across the mixing shock (degK); 
y = AT,&, dimensionless temperature change; 
p = M,/M,, gas-liquid mass flow ratio; 
Cz, Cpg, specific heat of the liquid and the gas (at constant pressure); 
H,, H,, total or reservoir enthalpy of liquid or gas; 
R,, the gas constant. 

The integral energy balance applied between reference planes and -2 

then reads: 

where 
and qa = pz/pI+Bu~,+C~(ql+AT),  Hgz = ~ u ~ , + C p Q ( ~ , + A T ) .  

Considering that p < 1 and pCpg < Cl we may simplify (3.1) to 

(3.1) I 4G1+Jf,Hg1 = %H,z+MgHga’ 
ql = pl /p l  + &ufl + Cz ql, Hg, = &u:, + Cpg Til 

Introduction of the quantities E ,  a, 8, a2 and q5 and 
(3.2) result in 

Y = (&) ( ( f 2 ) -  (32) * 

(3.2) 

substitution of (2.6) into 

(3.3) 

Our expectation that y is very small is vindicated if we substitute some current 
values in (3.3). For example withf = 3,O = 3 , ~  = 5, u* = 15 m/sec, p, = 1000 kg/ 
m3, Cl = 4200 J/kg, ql = 295 degK, we compute y = 0.78 x and AT, = 0.23 
deg K. 
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With the aid of expression (3.3) which gives the temperature change explicitly, 
we may evaluate the entropy change of the flow passing through the shock. 
Application of the second law of thermodynamics then yields possible and im- 
possible domains in the (e, 8)-diagram. This approach is taken in order to answer 
the questions raised at  the end of $2. 

The entropy change per kg mixture is given by 

(3.4) I A S  = (A~ ,+ ,uA~, ) / ( f  +P), 
where 
and 

ASl = the entropy change of 1 kg liquid 
AS, = the entropy change of 1 kg gas. 

The entropy change of 1 kg liquid is given, after considering that y < 1, 

AS, = C,ln(l+y) 2: 4 y .  by the expression 
(3.5) 

A similar expression valid for 1 kg gas is 

AS, = Cp,ln(l+y)-R,lnc 2: C,,y-R,lnE. (3.6) 

AS = C,y-,uRglne. (3.7) 

,u = (u*2/%!4J (Ola> (3.8) 
a = E ( E  - 1)/( f. - 8). (3.9) 

Substitution of (3.5) and (3.6) in (3.4) yields, after considering that ,uC,, < C,, 

From the definition of ,u, 0 and a we derive the expression 

and from (2.7) 

Substitution of (3.9) and (3.8) in (3.7), after some algebraic manipulation, 
results in the expression of the entropy change per kg mixture passing through 

We now want to make use of the second law of thermodynamics, which states 
that the entropy of an adiabatic process always increases. In  symbols this law 

A S  > 0. (3.11) is given by 

Boundary lines which separate possible from forbidden regions are given by 
putting A 8  = 0 in (3.10) resulting in an quadratic equation in 0. This equation 
can be solved, resulting in the two boundary isentropes 

(3.12) 

In  figures 2 and 3 these lines are sketched for f = 2.11. The following regions 
may be defined. 

For E > 1: possible A S  > 0, 0 < 8 < eS2; 
impossible A S  < 0, 8,, < 8 < esl. 
possible A S  > 0, 0 > OS2; 
impossible A S  < 0, O,, < 0 < Osz, 

F o r O < e <  1: 
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ddditional impossible regions are found where the Euler number a is negative. 
These regions are, for E > 1,0 > 8,, and, for 0 < E < 1,0 < 8 < Osl. The net result 
of this is that only two possible domains are left: for E < 1, 0 < 8 < O,, and, for 

The question of whether supersonic flow after a compression mixing shock is 
possible can now be answered. It can be easily seen that, for all values of E > 1, 
the O,, isentrope is situated below the line of constant Mach number Mz = 1 given 

<- f E 2  (3.13) 
by (2.11), or, when 

This implies that the O,, isentrope crosses only the right-hand branches of the 
parabolas yielding subsonic solutions. Hence in the domain E > 1, 0 < 19 < O,, 
no supersonic solutions can be found. 

This leaves us with the possible domain for an expansion mixing shock 
0 < E < 1, 8 > OS2. However, when 0 < E < 1, we have, according to (2.5), 
a2 < 4 which results in uIl < umz. It will be seen that this is contradictory to 
the gas entrainment mechanism proposed in 3 5. 

o < E < 1, > oS2. 

f@ - 1) E >  1) 2elne-e+ 1 2s- 1' 

4. Shock stability 
An important question is what parameters influence the stability of the shock 

which is located at  a position defined by the length co-ordinate x. It was felt that, 
in order to answer this question, wall friction must be introduced into our con- 
siderations. In  order to perform the stability calculation we will introduce the 
pressure gradient in the jet flow (aplax), and in the froth flow (aplax),. Let the 
shock be submitted to small pressure oscillations Ap upstream with phase angle 
ot, t denoting time and o circular frequency. These pressure oscillations wiIl 
result in small deviations of the shock front position Ay = y and in a small shock 
front speed Au = dy/dt;  see figure 4. The oscillations of the shock front take 
place between two fixed control planes A and B. 

In the calculations we will take into account the changing fluid mass AMs 
inside the two reference planes. Thus we write down for the continuity equation 

Miz = Mil + AM,. (4.1) 

Using (4.1) the momentum equation yields 

(Pl~rnt  + %lull) -fPzAmr+ (K +AM,)  (ub + A%>> = 1: AM, g ~ u d t ,  (4 .2)  
which results in 

(p lAmt+ M l l ~ I l )  - + Mil ~ 1 ~ )  - 2Ml1Au - 2AM,Au = AM, - Audt. (4.3) s," i t  
Neglecting second-order terms and introducing the symbols E ,  a, 4, u* and 8, we 
arrive at  the situation at  time t 

e2-c  l+a f-- +aO=O. ( (4 .4)  
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we derive the following expressions for E ,  a and 0 in (4.4): 
- 

i 0 
1 + Aa sin wt + tlAy’ 

- 
U a =  e =  a-t,AY 

€ =  
1 + AE sin wt + tl Ay’ l+Aasinwt+[,Ay’ 

where Aa = Ap/P, t1 = (1/131) (aP/ax)l, 62 = (11%) (aP/ax)z. 
(4.5) 

Substitution of (4.5) in (4.4), after multiplication of both sides by 

(1 +Aasinwt+&lAy)2, 
results in 

(a - t2Ay)2- (t. - t2Ay) { 1 +Act sin wt + glAy + Z [ f -  (2Au/u*)]} + 23 = 0; (4.6) 

when t = 0 we have E 2 - E ( l + i i f f + + , B  = 0. (4.7) 

Subtracting (4.6) from the initial condition (4.7) gives the relation between the 
first-order terms. 

After denoting Ay = y, Au = dy/dt, z, = ( 8 ) * / E ,  where ii&is the Mach number 
in the average flow after the shock, we arrive at  the following differential equation : 

(dy/dt) - vy = w sin wt 
with the solution 

(4.9) i W 
(w 6‘ - v sin wt - w cos at>, 

y =  (2x2) 
where w = (u* /ZE)  Aa and v = (u*/2Z) {t1 - 2t2( I - B2)]. 
From this result it is clear that when 6, and t2 + 0 and t + +a: 

v < 0, R2 < 1 + (t1/2t2), stable position; 
ti > 0, z2 > 1 + (t1/2[,), unstable position. 

In  practical cases tl/2t2 < 1 since the jet flow barely touches the channel wall 
and the stable position is associated with subsonic flow after the shock, the 
unstable position with supersonic flow after the shock. 

5. The gas entrainment mechanism in the mixing shock 
From the previous sections we know that the experimental points should lie 

on the mixing shock parabolas outside the forbidden regions. Up until now we 
cannot predict the location of the experimental points on these parabolas. We 
will start with the following model. 

It is postulated that the shock can only exist when the jet flow impinges on 
a free surface which prevents the jet flow from penetrating further. It is further 
assumed that the gas entrainment mechanism is similar to air enclosure during 
the impact of a water droplet on a free surface. On this subject extensive work 
was done recently by Engel (1966, 1967). Figure 5 ( a )  which was taken from 
Engel’s work gives a schematic view of the flow process involved. From the 
experimental data presented in these papers we have concluded the following: 
(i) cavity closure occurs when cavity depth is nearly maximal; (ii) in that position 
the kinetic energy of the fluid surrounding the cavity is very small and may be 
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neglected; (iii) the viscous energy which is dissipated between the time of droplet 
impact and the time of cavity closure is small enough to be neglected. 

To these statements we add the following assumptions: 
The process is isothermal. This means that extra free energy is needed to 

generate the surface area in comparison with an isentropic process. The thickness 

P- I 

Jet flow Jet flow 

B 
I 

X I 

+Y = A Y  
k-+dJqdt = AU 

FIGURE 4. Mixing shock oscillating between two control planes A end B. 

Free 
surface 

FIGURE 5(a) .  Proposed gas entrainment mechanism taken from Engel (1966, 1967). 

Gas 

- 
u4 
PI 

Free 
surface 

FIGURE 5(b ) .  Conditions before and after the entrainment zone. 
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of the entrainment zone is small compared with the thickness of the shock as a 
whole. This means that we may equate the gas pressure to the liquid pressure 
immediately behind the free surface or p ,  2: p,. 

Another sweeping assumption is that spherical bubbles will leave the entrain- 
ment zone without slip with the surrounding liquid phase. 

The role of gravity will be neglected since gDd/ul", < 1. In our experiments the 
mixing tube diameter D,, amounted to 0.03 m; was in the range of 30-70 m/sec; 
see also figure 5 ( b ) .  

Using these assumptions the energy balance of a spherical droplet taken before 
impact and after leaving the entrainment zone, reads 

Ekl-E,-E,-Ek = 0, (5.1) 
where Ekl and Ek, are the kinetic energies of the in- and out-going droplet, E, is 
the energy needed to compress the gas by surface tension and E,, is the extra 
surface energy which must be supplied for increasing the liquid-gas interface. 

Denoting the cavity volume by V ,  and the droplet volume by V,, we may write 
down the four contributions to the energy equation: 

Ek, = !ip&('*/#)2, (5.2) 

(5.3) 

(5.4) 

(5 .5 )  

Ek, = &p&d*2(1 + (V,/%)}', 
E,, = 4 6 / 4 8  {g - q,(Wql)} (@ - V b } ,  

E, = plEln [I  + ( 4 ~ / ( ( p u * ~ / a )  (6/7r)* V!)}]. 
In  these expressions the isentropic surface tension c = 0-072 N/m, qr = 293 

degK and 8g/8ql = - 0.0001425 N/m degK. Substitution of (5.2) to (5.5) in (5.1) 
yields an equation in V,  which may be solved numerically for given V,, u*, a, 
#, u. Once V ,  is found the volume flow ratio 8 and velocity ratio S before the 
shock can be computed using the following expressions: 

(5.7) 

Figure 6 gives the results of the numerical calculations, and shows the slip 
factor S as a function of the Euler number a for four droplet diameters 10, 1, 0.3, 
0.1 mm and four values of 4, 0.360, 0.322, 0.284, 0.250. We also computed the 
Mach number immediately after the entrainment zone. From these data we see 
that the results are nearly independent of the numerical value of $. The theory 
predicts a slip factor slightly larger than 1 and slowly increasing with increasing 
Euler number a. It will be shown in the next section that this trend is supported 
by experimental evidence. An important result is that we predict supersonic flow 
after the entrainment zone. It is stressed that the last result is not in contradic- 
tionwith the entropy considerations of 3 3, which only forbid supersonic flowwhen 
the mixture leaves the mixing shock. Finally, it is seen that the concept of an 
expansion mixing shock is not compatible with the mechanism described here. 
First, for an expansion mixing shock we have ulnz > ull. Denoting the mixture 
velocity after the entrainment zone by u2, according to the present model 
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u2 > Z G ~ ;  we thus obtain the requirement ur, < u2. We do not see how this in- 
equality can be realized since surface tension energy is withdrawn from the kinetic 

1.4 

1.0 1’2i 

14 

- 12 D,j = 0.1 IIIIII, 02M < 4 < 0360 

Dd = 03 IIUII, 0.250 < 4 < 0360 
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- 10 

Dd = 10 IIIIII, 0.250 < 6 < 0.360 
=-+G 

M 
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I I I 
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6. The cavitation shock 
By simply closing the gas valve of the ejector we can generate a particular type 

of mixing shock. Before this shock we have jet flow in which only vapour is 
present. As in the case of the mixing shock bubbles are created but these implode 
spontaneously and the vapour contained in the bubbles condenses. This is caused 
by the fact that the pressure behind the shock is higher than the saturated vapour 
pressure in the liquid. Thus after the shock only liquid is left. For obvious reasons 
we have called the phenomenon cavitation shock. The compression ratio across 
such a shock simply follows from (2.5) with a2 = 0, and p1 = pv wherepv denotes 
the saturated vapour pressure. The result is 

Since M2 = 0 after the shock €or an incompressible liquid, the shock is stable 
according to (4.9) if &/2& < 1. e may be very high in this case; for example, with 
u* = 15.6 m/sec, pl = 1000kg/m3, pv = 2300N/m2, f = 2.11, we find 6 = 215. 
Some experimental data that confirm (6.1) will be given in the next section. 

8 = 1 +af, where 8 = p2/pv, a = pu*2/pe. (6.1) 

- 8  

- 6  

- 4  

- 2  

0 
40 

7. Experimental results 
A detailed description of the flow circuit and measuring errors can be found 

in the author’s thesis (Witte 1962). A schematic view of the test assembly is 
given in figure 1. The air enters the suction chamber after passing a quarter-circle 
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orifice plate and a throttle valve. The water is injected by a high pressure (30 atm) 
pump; it passes a globe valve, which is used to adjust the pump discharge, and 
flows through an orifice plate to the nozzle situated in the suction chamber of 
the ejector. The air mass flow rate is measured with the aid of two quarter-circle 
orifice plates, together with a barometer and a thermometer. The pressure along 
the flow channel is measured with 12 Bourdon manometers with a range of 
0-10 atm. The suction chamber pressure can be determined with a U tube filled 
with mercury and a barometer; one end of the U tube is in open connexion with 
the atmosphere and the other end is connected to the suction chamber. The water 
temperature is measured with a calibrated thermometer with a range of 0-50 "C. 

Om, = 30 mm 10 00 9 0 0 0  

N=19 II 

oo%o 
0000000 0 0000000 ogogogo 

N = 3 7  11 

oo$goo 
0 0 0 0 0  
00000080 
000000000 
0000000% 
0 ~ 0 ~ 0 ~ 0 ~  9 000000 

N=61 I 
FIGURE 9. Location of nozzle exit areas relative to channel wall. 

In order to photograph the flow phenomena a Perspex mixing tube was used. 
A stroboscopic light source was used for producing flashes with a duration of 
3 x sec measured at  Q of the peak intensity. The results are shown in figures 7 
and 8, plate 1. The experiments were carried out in such a manner that para- 
meter a is adjusted and E and 8 measured. The back pressure is adjusted so as to 
make the end of the mixing zone coincide with the end of the mixing tube. This 
may be checked by reading the manometers along the mixing tube. The corre- 
sponding adjustment was maintained in all test runs. 

During the experiments we changed the numbers of holes N in one nozzle; 
figure 9 gives the shape of the different nozzle exit areas. Nozzles with 8, 19, 37 
and 61 holes were tested. The experiments were done for three different Reynolds 
numbers, pul,D,/q,, where D, denotes the superficial nozzle diameter and ql the 
liquid viscosity. The nozzle area ratio q5 and the Euler number a were also varied. 

Two programs were run: 
D,, = 0.03m (mixing-tube diameter), q5 = 0.322, N = 8, 19, 37, 61, Re = 7, 8,  

9 x lo5, a = 3.0, 3-85, 4.70, 5.80, 7-51, 9.90, 13.4, 17.1, 20.8, 23.5. This -program 
results in 120 points in an ( E ,  @-diagram. 

The other program was: 
B,, = 0-30m, q5 = 0.250, 0.284, 0.322, 0.360, N = 8, 19, 37, 61, Re = 9 x 105, 

a = 3.0, 3.85, 4.70, 5.80, 7.51, 9.90, 13.4, 17.1, 20.8, 23.5, yielding 160 points in 
an ( E ,  @-plot. 

The results of the first program are shown in figure 10. This diagram gives a 
view of the experimental points relative to the corresponding right-hand branches 
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of the mixing-shock parabolas. It is remembered that these branches yield sub- 
sonic solutions. It is seen that these experimental points are all located within 
5 yo of these lines. This gives an experimental proof of (2 .7 )  and illustrates that 
the flow behind a compression mixing shock is subsonic. 

It is seen that changes in Re and N do not influence the results to a large extent. 
We observe that S and 0 increase slowly with increasing a and 8. From the results 
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FIGURE 10. Results of the first test program. 0, Re = 9.00 x lo5; 
0, Re = 8.00~ lo5; A, Re = 7 . 0 0 ~  lo5; ----, 5 %  error line. 

__c 

a 

FIGURE 11. Comparison of the measured data with the theoretical predictions given 
in figure 6. 0, 4 = 0.250; A, # = 0.284; 0 ,  4 = 0.322; 0, 4 = 0-3GO. 
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of the second program similar conclusions can be drawn, in addition to the fact 
that changing 4 does not influence S to a great extent. Since this behaviour is also 
evident from figure 10, another (8, e)-plot similar to figure 10 is omitted. 

For comparing the amount of air which is swallowed by the shock with the 
predicted values, we have gathered the results of the following experiments in 
one diagram : 

D,, = 0.03, N = 19; Re = 9 x 105, 

4 = 0.250, 0.284, 0.322, 0.360; 

a = 3.0, 3.85, 4.70, 5.80, 7.51, 9.90, 13.4, 17.1, 28.0, 23.5, 

These data are compared with the theoretical prediction of the gas entrain- 
ment rate as a function of the Euler number a for different droplet sizes, given 
in figure 6 for the same parameters. 

In  figure 11 i t  is seen that for a wide range of droplet sizes, O.l-lOmm, the 
results compare reasonably well. For comparison, the diameters of the individual 
nozzle holes were of the order of 3-4 mm during these experiments. 

The results of the experiments with the cavitation shock can best be illustrated 
in the following table. 

Drnt = 0.03 m, q5 = 0.322, p ,  = 2650 N/m2 
N Mll(kg/sec) E measured E calculated 
8 11.1 192 196 

19 11.1 196 196 
37 11.1 192 196 
61 11.1 192 196 

Here, the deviation between the measured and the calculated values of the 
pressure ratio is not more than 2 yo. 

8. Concluding remarks 
Since from current experimental data supersonic flow is predicted after the 

entrainment zone, a compression shock must be present in order to obtain the 
predicted subsonic mixture flow. The two-phase compression shock was described 
by Campbell & Pitscher (1958). 

Figures 7 and 8 give photographs of the mixing shock and the cavitation shock 
taken through a transparent cylindrical mixing tube. Figure 7 shows the free 
surface which stands perpendicular to the flow direction at the wall of the mixing 
tube. Figure 8 shows the region of imploding bubbles in the cavitation shock. 

A detailed study of the structure of the mixing shock using an ultra-high-speed 
camera combined with a two-dimensional transparent flow channel was carried 
out by Rynders (1965). From his photographs, the free surface and the imploding 
bubbles and bubble clouh can be clearly seen. An interesting result of this 
investigation is that the free surface is only perpendicular to the flow direction 
at the channel walls. Proceeding inward the free surface curves backward in the 
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direction of the flow, forming a trough-like shape with its apex at the centre of 
the channel. 

From the photographs we could not get any proof of the existence of the en- 
trainment zone. Probably these free surface processes were going too fast to 
be filmed. Thus only the indirect evidence of $9 5 and 7 can be presented. 

Jet flow in - Free surface 

Supersonic mixture 
flow 

Mixing shock 

Compression shock 

Subsonic mixture 
flow out 

FIGURE 12. Schematic view of the mixing shock. 

Figure 12 gives a schematic view of the processes in the mixing shock as pro- 
posed in this paper. 

This paper is partly based on the author’s thesis presented a t  Delft Techno- 
logical University. He is greatly indebted to Prof. J. 0. Hinze for his help and 
advice in this investigation. 
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